So far, all the triangles we've solved have had one thing in common- they have all been *right* triangles. However, we can use sine and cosine to solve *oblique* triangles too - triangles WITHOUT a right angle.

To solve an oblique triangle, you must know the measure of at least one SIDE, and any two other parts of the triangle. The possibilities are:

Only three of these situations can be solved with **Law of Sines** – the other two will use **Law of Cosines**. Today, we're going to discuss two of the first three.

Law of Sines

If △ABC has sides a, b, and c, then

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

The triangle will look like one of the two shown below:

A is acute

A is obtuse

The Law of Sines can also be written in reciprocal form:

$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$$

The AAS Case:

For the triangles below, find the remaining sides and angles

1)

$$c = 5.05$$

2)

The ASA case:

3)

$$a = 141.36$$

$$\frac{c}{5in59} = \frac{92}{5in40}$$

$$c = \frac{925in59}{5in40} = 122.68$$

The SSA case (the ambiguous case):

Why is this ambiguous?

In Geometry, you learned that you could prove that two triangles were congruent using the following methods:

SSS ASA SAS AAS

However, when you were given two sides and the NON-included angle (SSA) then, depending on the information given, you could construct 0, 1, or 2 triangles. Here is what they look like:

0 Triangles

1 Triangle

2 Triangles

So this means that **not just one** unique triangle can necessarily be created.

How do we figure out if there are 0, 1, or 2 triangles with a SSA problem? Draw a triangle with $m\angle A = 30^{\circ}$, b = 10

What do we know about side "a"? It is a cross from the 30° L. If a is an altitude, then sin 300=? = a=5!

If $a < 5 \rightarrow 0$ triangles Now: If $a > 10 \rightarrow 1$ triangle If $5 < a < 10 \rightarrow 2$ triangles

Ex. 1) In \triangle ABC, m<A = 30°, a = 7, and b = 12. Solve the triangle for all the missing sides and angles:

12 C 4

No solution!

Ex.3) In \triangle ABC, m<A = 20°, a = 12, and b = 10. Solve the triangle for all the missing sides and angles:

$$A = \frac{10}{12}$$

$$A = \frac{12}{10}$$

$$A = \frac{12}{10$$

Ex.4) In \triangle ABC, m<A = 30°, a = 6, and b = 12. Solve the triangle for all the missing sides and angles:

Ex.5) In \triangle ABC, m<A = 40°, a = 75, and b = 85. Solve the triangle for all the missing sides and angles:

$$\frac{\sin 3}{85} = \frac{5 \ln 40^{\circ}}{75}$$

$$5 \ln 13 = \frac{85 \sin 40^{\circ}}{75} \approx 7285$$

$$13 = \frac{46.76^{\circ}}{75} \approx 180 - \frac{46.76}{5 \ln 40^{\circ}} \approx \frac{133.24^{\circ}}{5 \ln 40^{\circ}} \approx \frac{1}{5 \ln 40^$$

Ex.6) In
$$\triangle$$
ABC, m

NO SOLUTION!

Law of Sines: Applications!

1) A telephone pole tilts AWAY from the sun at a 7° angle from the vertical, and it casts a 27-foot shadow. The angle of elevation from the tip of the shadow to the top of the pole is 52°. How tall is the pole?

$$\frac{x}{\sin 52^\circ} = \frac{27}{\sin 45^\circ}$$

2) Observers 2.32 miles apart see a hot-air balloon directly between them but at the angles of elevation shown in the figure. Find the altitude of the balloon:

$$\frac{1}{5 \text{ in 260}} = \frac{2.32}{5 \text{ in 115}}$$
 1.20 mi
 1.20 mi
 1.20 mi
 1.20 mi

Area of an oblique triangle

The area of
$$\triangle ABC = \frac{1}{a}bh$$

Now, play around and see if you can get h in terms of the sides a, b, and c.

Therefore, using c as the base, the area of ABC= \(\frac{1}{2} \) Casin \(\frac{1}{2} = \frac{1}{2} \) Chsin \(A = \frac{1}{2} = \frac{1}{2

Area of an Oblique Triangle

The area of any triangle is one-half the product of the lengths of the two sides times the sine of their included angle. That is,

Area =
$$\frac{1}{2}$$
bcsin A = $\frac{1}{2}$ absin C = $\frac{1}{2}$ acsin B

Example: Find the AREA of a regular octagon (equiangular and equilateral) inscribed in a circle of radius 9 inches:

$$A=8(\frac{1}{2}9.9 \sin 45^{\circ})$$

$$=8(\frac{1}{2}9.9 \sin 45^{\circ})$$

$$=8(\frac{1}{2}9.9 \sin 45^{\circ})$$

$$=8(\frac{1}{2}9.9 \sin 45^{\circ})$$

$$=2(\frac{1}{2}3.9 \sin 45^{\circ})$$

In case you are curious, there is a REASON why the Law of Sines works...

Proof

Let's see why the Law of Sines is true. Considering the triangles show above, you can see that

$$\sin A = \frac{h}{b}$$
 or $h = b \sin A$, and
 $\sin B = \frac{h}{a}$ or $h = a \sin B$

From this,

bsin A = Asin B
$$\frac{b}{\sin A} = \frac{a}{\sin A}$$

In a similar manner (you'd need an altitude from B to side \overline{AC}), you should be able to show that $\frac{c}{\sin C}$ equals the other two as well.